WHAT ARE THE FCOPATH& ECOSIN

•Model for ecosystem based fishery

management
Free of charge
User friendly

Ecology of fisheries

Fisheries form part of complex ecosystems

Ecopath with Ecosim

 The Ecopath software package which includes time-dynamic (Ecosim) and spatial simulation (Ecospace) submodels can be used to study fisheries resources in an ecosystem context, for overall ecosystem analysis, and for exploring management policy options.

Key routines in Ecopath with Ecosim

- Ecopath routines for entry of key data on the biology and exploitation of ecosystem groups, and for establishing mass-balance;
- Econet: network analysis for study of ecosystem form and functioning;
- Ecotrace routine for tracing persistent pollutant accumulation in food webs.

Key routines in Ecopath with Ecosim Addressing uncertainty

- Pedigree for input data and overall index of model quality;
- Ecoranger routine for explicit consideration, in a Bayesian context, of the uncertainty inherent in all input;
- Sensitivity analysis for documenting the effect of inputs on estimated parameters.

Key routines in Ecopath with Ecosim

• Ecosim for dynamic simulation of effect changes in fishing and/or environmental regimes may have on fisheries catches (volume and value) and the abundance of various groups in the ecosystem.

Ecosim: ecosystem effects of fishing

Key routines in Ecopath with Ecosim

 Ecospace for spatial analysis of Ecopath models given user-provided habitat preferences for the functional groups in the system, and a fishing regime that may include protected areas.

Ecospace: spatial simulation

🚔 Ecospace: Ocean test model														_ [
Definition of habitats	Mo <u>v</u> ements		Eishery		ry	Base map				<u>R</u> un Ecospace											
Click item below then click cells on	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	
base map to draw item (land, etc.)	4	4	3	1	1	1	1	1	1	1	1	1	1	1	1	4	4	4	4	4	
C Land areas	4	4	3	1							1			1	3	4	4	4	4	4	
C. D. Mithelese Handlese (MDA)	5	3	1						1	1	1	1		1	3	4	4	4	4	4	
Restricted or protected areas (MPA)	5	3	1	1	1	1	1	1	2	2	2	1	Т	1	3	4	4	4	4	4	
Habitat type: 3: reef slope	5	4	3	3	3	2	2	2	2	2	2	2	3	3	3	4	4	4	4	4	
C Belative prim 1: near shore	5	4	3	4	4	4	2	2	2	2	2	2	3	3	3	4	4	4	4	4	
2: reets	5	4	4	3	3	4	4	3	3	3	2	2	3	3	3	4	4	4	4	4	
C Relative fishil 3. reel slope 4: soft bottom	5	4	4	4	3	3	4	3	3	3	2	2	2	3	3	4	4	4	4	4	
5: deep shelf	P	-5-	4	1	4-	-3-	4-	-3-	3-	-3-	2-	2	-2-	2	- 8-	1	4-	4	- 1 -	9	
6: deep ocean N	0	5	4	4	4	4	4	4	3	3	3	2	2	2	3	4	4	4	4	4	
	0	5	5	4	4	4	4	4	3	3	3	3	4	3	3	4	4	4	4	4	
	5	5	5	5	4	4	4	4	4	4	о Л	3	2	0	о Л	4	4	4	5	5	
	5	5	5	5	5	5	4	4	4	4	4	4	A	Л	4	4	4	5	5	5	
	5	5	5	5	5	5	5	5	4	4	4	4	4	4	4	4	4	5	5	5	
	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	
	5	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	
	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	
	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	
☐ Group color Biomasses across transect ♥ Show transect (log scale):																					
Prepare simulations <u>Ecosim</u> <u>SR</u> Plot Eguilibrium <u>Ecospa</u> ce																					

Ecopath with Ecosim

- Jointly, the elements of the package allow biological and policy analysis so far available only for areas where detailed, data-hungry multispecies models had been constructed over years by teams of experts;
- The integrated Ecopath approach continues to rely, however, on relatively few inputs, such as can be assembled within a one-week workshop by a multidisciplinary group of scientists knowledgeable about a specific ecosystem.

Routines in the pipeline

 Use of linear programming and fuzzy logic for model balancing;
 Incorporation of seasonal and time series data;

Tracking of persistent pollutants;

• Optimal sizing and siting of MPAs; ...

The basic assumptions

ECOPATH no longer assumes steady state but instead bases the parameterization on an assumption of mass balance over an arbitrary period, usually a year

Ecopath Master Equation (I)

Production = predation

+ fishery

-+ other mortality

+ biomass accumulation

+ net migration

Ecopath Master Equation (II)

Consumption = **Production**

+ respiration

+ unassimilated food

Production = Consumption

- respiration

- unassimilated food

ECOPATH Master Equation

$\mathbf{P_i} = \mathbf{Y_i} + \mathbf{B_i}\mathbf{M2_i} + \mathbf{E_i} + \mathbf{BA_i} + \mathbf{P_i}(1 - \mathbf{EE_i})$

 $\mathbf{P}_{\mathbf{i}}$ is the total production rate of (i), $\mathbf{Y}_{\mathbf{i}}$ is the total fishery catch rate of (i), $M2_i$ is the total predation rate for group (i), **B**_i the biomass of the group (i), \mathbf{E}_{i} the net migration rate (emigration – immigration), **BA**_i is the biomass accumulation rate for (i), while $MO_i = P_i \cdot (1 - EE_i)$ is the 'other mortality' rate for (i). **EE**; is the ecological efficiency of the group (i)

Ecopath Master Equation This formulation incorporates most of the production (or mortality) components in common use, perhaps with the exception of egzuvial (molting remains) generative (gonadal products) production

Ecopath Master Equation (I): How it is actually implemented B_i * P/B_i * EE_i = Catch_i

+ Biomass accumulation_i

 $+ \Sigma_{i} B_{i} Q/B_{i} DC_{ii}$

+ Net migration;

Most common input: B, P/B, Q/B, Catch, Net migration (NM), biomass accumulation rate (BA), and diet compositions (DC). B, P/B, Q/B, EE, NM <u>or</u> BA is estimated by Ecopath. DC's are usually modified as required to ensure that EE's are ≤ 1 .

Key data requirements for Ecopath

 $(t \cdot km^{-2})$

 $(t \cdot km^{-2} \cdot year^{-1})$

(proportion)

(proportion)

Biomass

- Production / Biomass
- Consumption / Biomass (t·km⁻²·year⁻¹)
- Ecotrophic efficiency
- Diets
- Catches (by fleet) (t·km⁻²·year⁻¹)
- Growth parameters for PSD & Ecosim
- It is possible to use ranges for all parameters (see Ecoranger).

Addressing uncertainty:

- Pedigree for input data and overall index of model quality;
- Sensitivity analysis for documenting the effect of inputs on estimated parameters;
- Ecoranger routine for explicit consideration, in a Bayesian context, of the uncertainty inherent in all input;
- Closed-loop policy simulations for evaluating the effect of uncertain inputs on the management process.

Ecoranger

Semi-Bayesian parameter estimation for Ecopath

Dissemination

- 1600+ users in some 100 countries (half in the tropics);
- Present rate: 3 new users a day;
 - 16+ workshops, of which 8 since Dec 97;
 - 100+ published models;
 50+ models known to be in preparation;
- 77 peer reviewed papers, incl. some high profile; 33 other publications; 13+ universities offering courses; 13 PhD's completed; 4 MSc's completed; 10000+ www.ecopath.org visitors in the first year.

Key routines in Ecopath with Ecosim Addressing uncertainty

- Pedigree for input data and overall index of model quality;
- Ecoranger routine for explicit consideration, in a Bayesian context, of the uncertainty inherent in all input;
- Sensitivity analysis for documenting the effect of inputs on estimated parameters.

Published mass-balance models (•) and models in prep. (•)

Ecopath models in S & SE AsiaMarineFreshwater

- Brunei Darussalam EEZ
- Hong Kong waters
- Indonesia, Java Sea
- Malaysia, Kuala Terengganu
- Philippines, Lingayen Gulf Thailand, Gulf of Thailand, 10-50 m
 - Thailand, Gulf of Thailand, 1963
 - Thailand, Gulf of Thailand, 1980
 - Philippines, Bolinag reef flat
- Philippines, San Miguel Bay
- Vietnam/China Shelf
- South China Sea, deep shelf
- South China Sea, open ocean

India, Veli Lake Thailand, Uboltrana reservoir, 1968-1972, 1985-1988

- Philippines, Laguna Lake, 3
 periods
- Philippines, 2 rice-fish models
 Philippines, farming system models
 China, mulberry dike-carp ponds

Under construction:

- Hong Kong, Pearl River estuary
- Taiwan, Chiku Lagoon
- ADB-RETA 5766